Truecolor Navigator 测量尊正 AM210 操作指南

软件需求

操作系统: Windows7 或更高版本

软件: 尊正 Truecolor Navigator 色彩管理软件

硬件需求

运行 Windows7 或更高版本的 PC

HDMI (或 DP) 转 DVI-D 转接线或双头 DVI-D 连接线 (根据电脑接口确定)

CA-210 (已预置校正通道)

USB-A转USB-B线缆

准备工作:

测量环境:暗室,减少环境光对测量数据的影响。

监视器开机预热 30 分钟以上(LCD 面板 LED 背光机型,如 AM210) 让监视达到稳

定状态

CA-210 开机预热 15 分钟以上

操作步骤:

使用视频连接线连接监视器的 DVI 端口

监视器信号通道选择 DVI。

并将屏幕显示设置成扩展模式 (PC 端为主要显示,监视器为次要显示)

CA-210 在连接软件前选择与设备对应的校正通道

打开 Truecolor Navigator

点击工具栏中的连接仪器,选择 CA-210/310,端口选择 USB 并点击确定

打开监视器的亮度波形图,确认测试序列窗口的黑电平刻度为0IRE

将测试序列窗口拖动至作为扩	⁻ 展 屈 的 A M 2 1 0	监视器中间位置
1寸///」「「「「」」「」」「」「」」「」」「」」「」」「」」」「」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」」	成井山へいてい	血池砧丁凹丛旦

连接完成后点击工具栏的"打开测试窗口"弹出测试序列窗口

TruecolorNavigator TrueColor Navigator		- 6 X
	2 🛄 🔟 🕐	¢
1 数据	📙 完度	
ee x v		
a	● 送移色度计 - □ × 規理计: 送择设备: Ck-210/Ck-310 ・ 0.6 0.6	
▲ 白点 0.43 0.41	▲ dE 2000	
0.30 0.31 0.35 0.31 0.35 0.31 0.35 0.37 0.41	Bit Bit Diff O<	

等待软件与仪器的连接。

否则请调整监视器视频设置菜单中的 DVI 像素格式

将仪器探头对准 AM210 屏幕中心位置,完成后点击右下角的开始测量

0.2 0.4 0.6 0.8	

此时会弹出测量参考值配置是否正确对话框,如果已经配置正确点击 OK 即可,如果未配置,

点击 cancel 然后会自动进入设置界面

这里可以设置测量的参考标准及测量的采样阶数,对于色卡测量可以选择不同的颜色集参考标准。

1月17日		HDTV rec709	→ 31		
☑ 白色	目标	D65	•	1	20
伽玛 Po	ower 🔻	2.4		》(D/150239)。	20
TE char	•				
O CIE	1931	O CIE 1976		预热时间	1000
新 4日					
	u'	v		颜色集	🖸 ColorChecker 🔵 EBV3237
Red	0.450704	0.522887			
Green	0.125	0.5625		信号	● 本地窗口 ● 网络
Blue	0.175439	0.157895		1475 -	
White	0.197835	0.468326		трнин	127.0.0.1
				TT 1011	121.0.0.1

设置完成后点击确定,软件即可开始灰阶数据的测量

校正前测量结果:

灰阶测量

同样的,点击软件下方的色域测量选项进入色域测量窗口,直接点击开始测量按钮即可。 后续的饱和度 / 色阶 / 色卡测量都是同样的操作。可以看看 AM210 如果不做任何校正的

色彩表现情况。

色域测量

饱和度测量

色阶测量

之后如果需要查看相关的测量数据可以点击"导入数据"导入 data 文件即可

件授权)

完成上述测量后,可以点击工具栏上的"导出数据"保存此次的测量结果(导出数据需要软

		z	у		
暗肤				o	
明肤				0	0.6
蓝天				0	家族である
橄榄绿				0	1.5 × × × × ×
蓝紫				°	
					a. 8°°6
	dE 2000				*
	ul 2000				0.3
-10					*
8			 _		
6		 	 		
4					
2					
4 0					UU,1U,2U,4U,5U,6)

色卡测量

校正后测量结果:

按照同样的方式再测量一次 AM210 出厂校正后的数据。

其表现如下列图所示 (校正环境,硬件的差异等可能导致结果有细微差异)

灰阶测量

色域测量

x v z x y u' 11 62.911 54.789 48.278 0.379 0.330 0.244 0.4 12 51.152 37.798 25.820 0.446 0.329 0.244 0.4 13 45.121 29.302 14.518 0.507 0.329 0.342 0.4 14 41.845 24.355 7.530 0.568 0.330 0.389 0.5 15 38.542 19.728 1.412 0.646 0.331 0.455 0.445 1		数据					
E1 62.911 54.789 48.278 0.379 0.330 0.244 0.4 H12 51.152 37.798 25.820 0.446 0.329 0.294 0.4 H13 45.121 29.302 14.518 0.507 0.329 0.342 0.4 H14 41.845 24.355 7.530 0.568 0.330 0.389 0.5 H15 38.542 19.728 1.412 0.646 0.331 0.455 0.4 H15 38.542 19.728 1.412 0.646 0.331 0.455 0.4 H16				z		у	1
tra 51.152 37.798 25.820 0.446 0.329 0.294 0.2 tra 45.121 29.302 14.518 0.507 0.329 0.342 0.2 tra 41.845 24.355 7.530 0.568 0.330 0.389 0.3 s 38.542 19.728 1.412 0.646 0.331 0.455 0.3 tra tra tra tra tra	£[1		54.789				0.4
45.121 29.302 14.518 0.507 0.329 0.342 0.4 41.445 24.355 7.530 0.568 0.330 0.389 0.3 41.5 38.542 19.728 1.412 0.646 0.331 0.455 0.5 attrastic attrastic	红 <mark>2</mark>						0
tI 41.845 24.355 7.530 0.568 0.330 0.389 0.3 tI 338.542 19.728 1.412 0.646 0.331 0.455 0.5 dE 2000 10 6	£13						0.4
t <u>15</u> 38.542 19.728 1.412 0.646 0.331 0.455 0. ■ dE 2000 10 8 6	红4						0.5
■ dE 2000	£15				0.646		0.
	10 0 6	dE 2000					

饱和度测量

	数据							● 色域
			z				v 🖸	
Ĥ							0.40	*94.2819% 覆盖
٤							0.52	0,6
绿		69.491					0.5	
	16.028	7.124	82.127	0,152	0.068	0.174	0,1	9.5 ······
-10 	dE 2000					^{段范围} 7*		
4 2							*	0.1

色阶测量

	<u></u>						
4T 1	X	V 0.552	Z		y 0.212	u'	
4T2	4.570	2 361		0.633	0.312	0.365	0.1
红3	11.965	6.123	0.442		0.330	0.455	0.5
红4							0.5
红5				0.646			0.5
	dE 2000						
					IB		

色卡测量

数据解读:

亮度:灰阶测试 (Grayscale) 中, Y值代表监视器在不同灰阶下的亮度实测值。依据EBU3320 对于Grade 1监视器规定,尊正监视器出厂默认设置规定在0-255的灰阶范围内,亮度值应 该近似在0-100cd/m²或0-29.4FTL范围左右。不正确的亮度可能影响整个灰阶的真实还原。

对比度:对比度(Contrast)代表在灰阶范围内,最高输出亮度和最低输出亮度的比值。 比值越高,证明监视器细节表现越真实,图像的清晰度、灰阶层次表现越好。(OLED黑场几 乎是全黑,普通仪器无法正确读到亮度,对比度值可能为无限大。)

Gamma 伽玛: 反映监视器的电光转换特性, 技术领域目前倾向于统一至ITU-R BT.1886标准, 其推荐值近似于2.4, 所以尊正监视器出厂默认设置为2.4, 并且要求在10%~90%输入信号时波动在理想值的±0.1范围内。

RGBLevels:可以测试屏幕的白平衡情况,可以清楚的看到RGB三色高低,反映的是分别 相对于理想分量的偏差。RGBLevels比色温更能反映监视器白色的复现能力。 **DE2000**: CIE DE2000为最新的色差公式,表示颜色测量值与理想值的差别,差别3以下表示人眼基本感觉不到差别,尊正OLED监视器出厂时基本都在2以下。

Gamut色域: 反映监视器能表现的颜色范围, 100%覆盖最理想, 过大或过小都不正确。此项测试可以针对不同色域参考值, 宽色域监视器可以实现较多的色域参考范围的覆盖。

Gamut dE2000: 表示白色、三原色、三补色的颜色偏离程度, 尊正OLED监视器出厂时都 在2以下。

Tolerance: 色域三原色及白色的容限范围, EBU3320 对于 Grade 1 监视器规定了以上颜色的一个容限范围,测试结果应在规定的范围之内。尊正监视器全部执行 Grade 1 标准。